Generalized inverses with respect to general norms. II
نویسندگان
چکیده
منابع مشابه
Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm
Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولGeneralized Inverses and Applications
Fredholm’s method to solve a particular integral equation in 1903, was probably the first written work on generalized inverses. In 1906, Moore formulated the generalized inverse of a matrix in an algebraic setting, which was published in 1920, and in the thirties von Neumann used generalized inverses in his studies of continuous geometries and regular rings. Kaplansky and Penrose, in 1955, inde...
متن کاملOperators with equal projections related to their generalized inverses
In this article we characterize operators on Banach spaces which have the same projections related to their outer or inner generalized inverses. As corollaries, we obatin well-known results for the Drazin inverse of bounded operators.
متن کاملVoronoi Cells of Lattices with Respect to Arbitrary Norms
Motivated by the deterministic single exponential time algorithm of Micciancio and Voulgaris for solving the shortest and closest vector problem for the Euclidean norm, we study the geometry and complexity of Voronoi cells of lattices with respect to arbitrary norms. On the positive side, we show that for strictly convex and smooth norms the geometry of Voronoi cells of lattices in any dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1991
ISSN: 0024-3795
DOI: 10.1016/0024-3795(91)90082-8